Construction of variable-stepsize multistep formulas
نویسندگان
چکیده
منابع مشابه
Construction of Variable-Stepsize Multistep Formulas
A systematic way of extending a general fixed-stepsize multistep formula to a minimum storage variable-stepsize formula has been discovered that encompasses fixed-coefficient (interpolatory), variable-coefficient (variable step), and fixed leading coefficient as special cases. In particular, it is shown that the " interpolatory" stepsize changing technique of Nordsieck leads to a truly variable...
متن کاملAnalysis of variable-stepsize linear multistep methods with special emphasis on symmetric ones
In this paper we deal with several issues concerning variablestepsize linear multistep methods. First, we prove their stability when their fixed-stepsize counterparts are stable and under mild conditions on the stepsizes and the variable coefficients. Then we prove asymptotic expansions on the considered tolerance for the global error committed. Using them, we study the growth of error with tim...
متن کاملA technique to construct symmetric variable-stepsize linear multistep methods for second-order systems
Some previous works show that symmetric fixedand variablestepsize linear multistep methods for second-order systems which do not have any parasitic root in their first characteristic polynomial give rise to a slow error growth with time when integrating reversible systems. In this paper, we give a technique to construct variable-stepsize symmetric methods from their fixed-stepsize counterparts,...
متن کاملEquivalent Forms of Multistep Formulas
For uniform meshes it is shown that any linear fc-step formula can be formulated so that only k values need to be saved between steps. By saving additional m values it is possible to construct local polynomial approximations of degree k + m — 1, which can be used as predictor formulas. Different polynomial bases lead to different equivalent forms of multistep formulas. In particular, local mono...
متن کاملStepsize Restrictions for Boundedness and Monotonicity of Multistep Methods
In this paper nonlinear monotonicity and boundedness properties are analyzed for linear multistep methods. We focus on methods which satisfy a weaker boundedness condition than strict monotonicity for arbitrary starting values. In this way, many linear multistep methods of practical interest are included in the theory. Moreover, it will be shown that for such methods monotonicity can still be v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1986
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1986-0856699-x